Assignment 12.

1. It is given that the complex numbers r, s, and t are related by the equation

$$
\frac{1}{r}=\frac{1}{s}+\frac{1}{t}
$$

If $s=1-3 \mathrm{i}$ and $t=2+\mathrm{i}$, find r in the form $x+y \mathrm{i}$ where $x, y \in \mathbb{R}$.
2. Solve the simultaneous equations

$$
\left\{\begin{array}{l}
\mathrm{i} w+3 z=2+4 \mathrm{i} \\
w+(1-\mathrm{i}) z=2-\mathrm{i}
\end{array}\right.
$$

expressing z and w in the form $x+y$ i, where x and y are real.
3. On a single diagram, sketch the following loci and shade their common region:

$$
|z-3-3 \mathrm{i}| \leq 3, \quad \text { and } \quad|z-1| \geq|z-\mathrm{i}| .
$$

Hence obtain the maximum value of $|z-5-\mathrm{i}|$, where z satisfies both the conditions.
4. Simplify $z=\frac{1+\sin \theta+\mathrm{i} \cos \theta}{1+\sin \theta-\mathrm{i} \cos \theta}$, and find its modulus and argument in terms of θ.
5. (a) Simplify the expression $(6-3 i)^{2}-8(2+3 i)$.
(b) Find the square roots of $11-60 \mathrm{i}$, writing your answers in the form of $a+b \mathrm{i}$, where a and b are reals. [5]
(c) Hence solve the quadratic equation $2 z^{2}-(6-3 \mathrm{i}) z+2+2 \mathrm{i}=0$.
6. (\dagger) The complex number z satisfies the equation $|z-1|+|z-3|=2 \sqrt{2}$. Without writing z in the form of $x+y \mathrm{i}$, show that $\operatorname{Re} z=\sqrt{2}|z-1|$.

Total mark of this assignment: $30+4$.
The symbol (\dagger) indicates a bonus question. Finish other questions before working on this one.

